Roller Chain Applications in Power Transmission Systems in Hagerstown Maryland

First Quality ~ First Time

Apparatus Repair & Engineering, Inc.

A.R.&E. is the Premier Electric Motor Sales, Service, and Repair facility in the quad-state region of Maryland, Pennsylvania, West Virginia and Virginia. This business was begun in 1927 and we are proud to continue the efforts of the founding partners who have served the local Commercial and Industrial markets over these many years. Times have changed in the many years since the inception of this business, and A.R.&E. has grown and changed with the times. Today the use of AI, computers, and factory automation is necessary for businesses to remain competitive in the global market, and A.R.&E. is here to assist with those challenges. And we promise our work will be... First Quality ~ First Time.

portfolio1 portfolio2 portfolio3 portfolio4

Fabrication Capabilities

This is an example of an automated oil dispensing tank and pump system that was totally designed and built by A.R.&E. for a local manufacturer...

Emergency Generator Installation

Here's what an emergency generator installation can look like when Apparatus Repair & Engineering, Inc. is involved...

Metalizing

Sometimes it's necessary to "buildup" a metal surface that's been damaged by wear. Metalizing is one method of doing just that...

Rewinding

Total rewind of a customer's electric motor. Sometimes, though no one's fault, an electric motor "burns up." That's when our rewind department shines. Here's the technician is rewinding this small motor, and in a couple of hours it'll be "as good as, (or better than) new"...

Services

Service to our customers is extremely important. Sometimes you just can't remove a piece of equipment and bring it to the shop for repair. And don't forget our ability to remove and reinstall equipment when you just don't have the time or personnel to do it...

small portfolio1 small portfolio2 small portfolio3 small portfolio4 small portfolio4 small portfolio4 small portfolio4 small portfolio4 small portfolio4
themed object
First Quality ~ First Time
get in touch
[Library/menu-zoom/zoom-menu.htm]

Sprockets

Sprockets

Sprockets are pretty mundane items... in my estimation. But read on, my friend. The information in the article below has been condensed, summarized, and taken from a website called "Efficient Plant" (formerly Maintenance Technology). It may very well change my mind... as well as yours, when it comes to the commonplace "Sprocket".

The Basics Of Roller Chain Sprockets

Think of all your chain-driven machinery. Now consider the sprockets driving all those chains. Temperature extremes, corrosive environments, harsh wash-downs, and impact loads, all affect the sprocket. These conditions destroy keyways and shear teeth. And sprockets tend to be ignored until a breakdown. Suddenly, it's your job to find the correct replacement and get it installed so production can continue ASAP. Understanding the basics of roller chain sprockets will help you do just that (and perhaps prevent unexpected failures going forward).

In addition to helping you identify types of sprockets, the following guidelines will help you identify options that may offer improved performance and longer service life. Proper replacement at the appropriate time will reduce downtime and save you money.

0412tsubaki1

Fig. 1. How to measure chain pitch

Sprocket Identification & Terminology

Chain type and pitch. . . Sprockets are designed for use with a specific chain.  All chains are made to a given standard—with ANSI being the most common in the U.S. Each chain is identified by “pitch,” which refers to the measurement from one roller-pin center to the next roller-pin center of a given chain.  ANSI chain pitch is always measured in 1/8” increments. Refer to Fig. 1 for how to measure chain pitch, then see Table I for ANSI Standard Chain pitch sizes.

0412tsubaki2

Table I. ANSI Standard Chain Sizes

There are, of course, roller-chain standards other than ANSI, but they’re not commonly used in the U.S. The second most popular is British Standard Chain, in which chain pitch is measured in 1/16” roller-pin-center to roller-pin-center spacing increments.

After determining the chain pitch, note the number of chain strands used in the application: single strand, double strand, triple strand, etc. The sprocket selected for the application needs to match the chain—i.e., double-strand chain runs on a double-strand sprocket. (Refer to Fig. 2.)

0412tsubaki3

Fig. 2. Single-strand and Multi-strand tooth profile

Sprocket hub style. . . While there are unlimited arrangements, a vast majority of roller chain sprockets fall into one of these major styles: no hub (A-style); a hub projection from one side (B-style); or hub projections from both sides of the sprocket (C-style). (See Fig. 3.)

0412tsubaki4

Fig. 3. The most common ANSI sprocket styles

The Number of sprocket teeth or sprocket diameter. . . The easiest way to determine the number of teeth is simply to count them. Sometimes, however, the teeth are worn away.  In this event, the caliper diameter may assist in identifying the sprocket.

The term “caliper diameter” refers to the dimension measured from sprocket-tooth valley to sprocket-tooth valley on the opposite side of the sprocket. This dimension measures the diameter of the sprocket plate not including sprocket teeth. On sprockets with an odd number of teeth, the measurement would be taken from the valley of one tooth to the valley as close to 180° on the opposite side of the sprocket. (See Fig. 4.)

0412tsubaki5

Fig. 4. Primary sprocket dimensions

Hub diameter on B- and C-style sprockets. . . The outside diameter is known as the “hub diameter,” which is typically specified by the sprocket supplier. Hub diameter determined by the size of the sprocket bore, the keyway used and the requirement to maintain a sprocket-wall thickness that will withstand the forces required of the application.  (Refer again to Fig. 4.)

LTB (length through bore). . . “LTB” refers to the inside hub diameter and the length to which it is machined. This length must be long enough to accommodate the proper-size keyway to withstand shear and torque stress induced by the rotating shaft. (See Fig. 4.)

0412tsubaki6

Fig. 5. Sprocket with
keyway and two set screws.

 

Sprocket bore. . . This term pertains to the inside diameter of the sprocket and how it is secured to the shaft.

The term “plain bore” is associated with A-, B- and C-style sprockets, where there is no special machining performed to accommodate keyways or set screws, only a hole to accommodate shaft diameter. Plain bore sprockets typically require additional machining before installation.

The term “finished bore” is associated with B- and C-style sprockets, where the inside diameter of the hub is machined to accommodate a specific shaft diameter: This configuration includes a standard keyway and set screws. Finished bore hubs can also be machined to non-standard yet specific requirements depending on the needs of the application. (A standard finished bore sprocket is shown in Fig. 5.)

“Maximum bore diameter” is another term that’s associated with B- and C-style sprockets. It refers to the maximum bore size to which a sprocket can be machined without compromising structural integrity, yet, still be capable of accepting a standard keyway. This measurement is normally listed in a vendor’s catalog.

Keyway dimensions and set-screw locations. . . Typically, the sprockets are secured to the shaft using an ANSI standard dimensioned keyway and one or more set screws. The ANSI standards provide a keyway of a specific length, width, and depth for a given shaft diameter. See Fig. 6 for a partial listing of common keyway dimensions.  It is possible that your application not match this standard. If this is the case, you will have to measure or reference the proper-size keyway and supply this information to your sprocket supplier.

A set screw is used to prevent any axial movement of the sprocket; if one is used, the placing is usually above the keyway.  This location keeps the sprocket from moving along the shaft and stops the key from moving.  To better hold the sprocket in place, at least one manufacturer incorporates two set screws as their standard. Located at 90° to the keyway, the second set screw provides additional clamping force, as well as reduces the side forces the key receives, which leads to longer service life.

0412tsubaki7

Fig. 6. ANSI keyway and set-screw specifications.

Hardened-tooth sprockets. . . As the chain contacts the sprocket, frictional wear of the tooth and pocket occurs.  With each rotation, every sprocket tooth contacts the chain. Sprockets are typically stamped from plate steel, pressed from powder metal or machined from bar stock. The hardness of the tooth directly relates to sprocket life. A sprocket with a “hardened tooth” may last three times longer than a softer sprocket. Some manufacturers charge extra for this option.

0412tsubaki8

Other Common Sprocket Variations

Bushed sprockets: At times, a bushed sprocket is used in applications where higher working loads are prevalent. Sprockets with tapered bushings will fall into the QD®, Split-Taper or Taper-Lock® families.  QD and Split-Taper bushings are flanged and commonly utilize large anchor bolts around the circumference of the flange to retain itself to the sprocket (Fig. 7 above). Taper-Lock bushings are similar in that they incorporate a split through the taper to provide a true clamp on the shaft. These bushings are retained to the sprocket with a series of set screws on the OD of the bushing (parallel to the shaft [Fig. 8 above]). 

Steel split sprockets: These sprockets (Fig. 9 above) are cut through the entire diameter for ease of installation and removal. The sprocket halves are held together by bolts on either side of the hub. This particular style is normally available in chain pitch sizes of 40 through 240, and bore diameters of 3/4 through 6, depending on chain pitch selected.

Double single sprockets: This type of sprocket (Fig. 10 above) is used in applications where two or more items are powered by a common drive shaft. The space between the sprocket plates is wider than a multi-strand sprocket and allows two independent strands of chain to engage without contacting each other. With this type of sprocket, each strand of the chain may exit in a different direction than the other—
i.e., one strand exiting toward the ceiling and the other running parallel to the floor.

Idler sprockets, chain tensioner: These types of components are used in applications where the drive chain may experience slack due to long lengths, non-adjustability of the driven shaft or where the chain has to be guided around an obstruction. They prevent chain whipping and uneven distribution of load. This type of sprocket can also be used in applications where the drive chain may be reversed in direction and the idler sprocket is mounted to the outside of the chain to prevent whipping. See (Fig. 11 above) for an illustration of a ball-bearing idler sprocket and bronze bushing.

ROI from sprocket inspection

Applying a new chain to worn sprockets can reduce chain-life expectancy by half. Since the cost of the chain is often much higher than that of sprockets, replacing both chain and sprockets at the same time, while equipment is already down for service, can save time and money. The small additional cost will be outweighed by fewer problems and considerably longer chain life. Remember: The only certainty that comes with installing a new chain onto old sprockets is that you’ll be doing the same job again soon.

Sprockets are applied based on the ratio required and the torque requirements of the application, and as you can see from this article... a whole bunch of other criteria! So make sure you talk to your friends at A.R.&E. before you blindly select a roller chain sprocket for that next "critical" project or the replacement of a worn item.